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1 Robustness in neural computation

Neural networks undergo structural changes throughout their existence, whether
through developmental processes, learning experiences, or even damage. The
concept of robustness is vital in neural computation as it allows the brain to
maintain stable and reliable performance despite perturbations and noise. This
tutorial proposal aims to introduce theoretical neuroscientists to tools to assess
the robustness properties of models of neural computation. Participants will
gain a comprehensive understanding of how persistence analysis can shed light
on the stability and reliability of neural networks.

Structural stability analysis can be employed to investigate how neural net-
works respond to damage or lesions. By assessing the network’s ability to retain
functionality and stability in the presence of structural disruptions, researchers
can understand the mechanisms of brain resilience and recovery. Addition-
ally, Normally Hyperbolic Invariant Manifolds (NHIMs) provide a framework
for comprehending the dynamics and stability of complex systems like neural
networks by identifying the key structures that govern their behavior. NHIMs
act as critical structures that maintain the system’s stability, enabling robust
neural computation.

Finally, Fenichel’s persistence theorem provides a valuable tool for analyzing
the long-term behavior and robustness of dynamical systems, including those
encountered in theoretical neuroscience. Fenichel’s persistence theorem states
that if a dynamical system has a stable manifold associated with a particular
equilibrium point or steady state, then the solutions that start sufficiently close
to this manifold persistently stay in its vicinity despite small perturbations. The
tutorial will discuss practical consequences of this theorem for models of neural
computation.

1.1 Introduction

Robustness in dynamical systems refers to the ability of a system to maintain its
functionality or desired behavior even in the presence of external disturbances or
parameter variations. Bifurcations are key indicators of the system’s robustness.
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When a system undergoes a bifurcation, it may transition from having a single
(asymptotically) stable fixed point stable to an unstable state, or vice versa.
The ability of a system to retain stability is a measure of its robustness.

Identifying bifurcation points and understanding how they affect system be-
havior is critical for assessing the robustness of dynamical systems, particularly
in engineering, biology, and other fields where stability and predictability are
paramount.

2 Parameter variability in biological systems

Biological Variability: In living organisms, individual neural networks can ex-
hibit considerable variability in terms of neuron properties, synaptic strengths,
and connectivity patterns. This variability arises due to genetic differences,
environmental factors, and developmental processes. As a result, the specific
values of key parameters (e.g., synaptic weights, time constants, thresholds) can
vary from one individual to another and even within the same individual over
time, while the behavior is the same.

Noise: Neural networks are subject to intrinsic and extrinsic sources of noise.
These sources of variability can affect the precise values of parameters and
influence network behavior.

Plasticity and Adaptation: Biological neural networks are highly adaptive.
They can change their connectivity and functional properties in response to
learning, experiences, and environmental changes. The dynamic nature of these
networks means that parameters like synaptic weights and neural excitability
can be continuously adjusted and are therefore uncertain in the short term.

3 Bifurcation

In the presence of parameter uncertainty, it’s essential to design systems that
remain functional and stable despite variations in parameter values. Under-
standing bifurcations enables us to assess the system’s response to parameter
uncertainties. A bifurcation is a critical parameter value where the qualitative
behavior of the system undergoes a significant change as a parameter is var-
ied. In other words, it’s a point at which a system transitions from one type
of behavior to another. Bifurcations can involve the creation or destruction of
equilibrium points, limit cycles, or chaotic behavior. They are fundamental to
understanding how dynamical systems respond to changes in parameters. Bi-
furcations are intimately connected to structural stability because they often
represent the boundary between structural stability and instability. By iden-
tifying regions in parameter space where bifurcations occur, we can take steps
to ensure that the system remains robust by avoiding undesirable behaviors
associated with bifurcation points.
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3.1 Saddle-node bifurcation

A saddle-node bifurcation is a collision and disappearance of two equilibria in
dynamical systems. See also Sec. 6.1.

Normal Form:
ẋ = µ+ x2 (1)

The equilibria points only exist at the solution to the quadratic equation
x(t) = ±

√
−µ. Now notice that we have three scenarios,

1. If µ < 0 we have that there exists two equilibrium points, one at −
√
−µ

and one at
√
−µ. Notice furthermore, the stable equilibrium point is at

the negative value and unstable at the positive.

2. If µ = 0 we see that we only have one equilibrium (at the origin), however
this equilibrium is upon a saddle point, therefore unsurprisingly we call it
a saddle node bifurcation,

3. If µ > 0 we see that x can only be imaginary meaning that there are no
equilibria on the real domain, therefore we have no equilibria.

3.2 SNIC

Saddle-node bifurcation on invariant circle, also known as SNIC or SNLC (saddle-
node on limit cycle) bifurcation, occurs when the center manifold of a saddle-
node bifurcation forms an invariant circle. Such a saddle-node homoclinic bifur-
cation results in the birth of a limit cycle when the saddle-node disappears. The
period of this cycle tends to infinity as the parameter approaches its bifurcation
value. It plays an important role in computational neuroscience, where it is
exhibited by Class 1 excitable systems (such as cortical pyramidal neurons).

The theta model is the normal form for the saddle-node on a limit cycle
bifurcation (SNIC).

dθ

dt
= 1− cos θ + (1 + cos θ)I(t) (2)

where I(t) is the input to the model. The variable θ lies on the unit circle and
ranges between 0 and 2π . When θ = π the neuron “spikes”, that is, it produces
an action potential.

The bifurcation occurs as a parameter varies through the critical value of
I=0.

1. When I < 0 there is a pair of equilibria. One of the equilibria is a saddle
point with a one-dimensional unstable manifold.

2. When I = 0 there is a saddle node with a homoclinic orbit.

3. For I > 0 there are no equilibria.
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4 Structural stability

Structural stability is a fundamental concept in the study of dynamical systems.
A structurally stable system is one for which small perturbations in the system’s
parameters do not lead to drastic qualitative changes in the system’s behavior.
In other words, if a system is structurally stable, its behavior remains robust
under perturbations.

Robustness is closely related to the notion of structural stability. In struc-
turally stable systems, perturbations result in smooth changes in the system’s
behavior. However, when a system loses structural stability at a bifurcation
point, small parameter changes can lead to drastical qualitative changes in the
system’s dynamics. Understanding the types and mechanisms of bifurcations is
essential for assessing the structural stability of a dynamical system.

Definition 1 (Flow of an autonomous system of ODEs). Let F : Rn → Rn

be a (time-independent) vector field and x : R → Rn the solution of the initial
value problem

ẋ(t) = F(x(t)), x(0) = x0.

Then ϕ(x0, t) = x(t) is the flow of the vector field F. We will use the notation
O(x, ϕ) := {ϕ(x, t) | t ∈ R} to denote an orbit.

Definition 2 (Closed orbit). A closed orbit of a flow is a solution x(t) such
that there exists t1, t2 ∈ R with t1 ̸= t2 for which x(t1) = x(t2).

Definition 3 (Topological equivalence). Let X,Y be two topological spaces.
Let ϕ be a flow on X, and ψ be a flow on Y . Then ϕ and ψ are topologically
equivalent if there is a homeomorphism h : X → Y mapping orbits of ϕ to orbits
of ψ homeomorphically, and preserving the orientation of the orbits. In other
words, there must be an increasing map τ : X × R → R such that

h(ϕτ(t,x)(x)) = ψt(h(x)). (3)

Theorem 1 (One Dimensional Equivalence). Two flows and in are topologically
equivalent iff their equilibria, ordered on the line, can be put into one-to-one
correspondence and have the same topological type (sink, source or semistable).

4.1 Dynamical systems on manifolds

For a more general setting one might study flows on manifolds.

Definition 4. Let M be a compact Riemannian manifold without boundary.
For each r ≥ 1, let X r(M) denote the set of Cr vector fields ofM , endowed with
the Cr topology. Every S ∈ X r(M) generates a Cr flow ϕ = ϕS : M ×R →M .
Two flows are topologically equivalent if there is a homeomorphism h : M →M
that maps the orbits of one flow onto those of the other flow while preserving
the orientation. We say S is Cr structurally stable if S has a Cr neighborhood
U in X r(M) such that every X ∈ U generates a flow ϕX that is topologically
equivalent to ϕS (i.e. it sends the orbits of X to the orbits of Y , preserving the
orientation of the orbits.
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Remark 1. For every manifold, structurally stable flows form non-empty open
subsets of X r(M) [4].

Remark 2. If a set is equipped with a topology and an equivalence relation then
its structurally stable elements are those interior to the equivalence classes. The
“structure” is whatever is preserved by the equivalence relation; its structure
remains the same when a structurally stable element is perturbed. For discrete
dynamical systems the set is D = Diffeo(M) , equipped with the C1 topology,
and the equivalence relation is topological conjugacy. For flows the space is X
and the equivalence relation is orbit equivalence. Discrete dynamical systems
and flows are actions by the groups Z and R, respectively. For actions of more
general groups the equivalence relation is similar: orbits are sent to orbits by a
homeomorphism.

4.2 Structural stability in the plane

With the definition of structural stability, we can state the theorem that de-
scribes which systems are structurally stable. The theorem describes require-
ments for the system’s recurrent sets. An orbit is recurrent if it is contained in
its own ω-limit set or its own α-limit set.

Theorem 2 ([5]). A necessary and sufficient condition for the system

dx

dt
= f(x), x ∈ R2 (4)

to be structurally stable is that its flow has hyperbolic periodic orbits, no other
recurrence, and no saddle connections (there is no trajectory connecting saddle
points).

4.2.1 Hyperbolicity

The fixed point x of the flow ϕt : M →M is hyperbolic if x is a hyperbolic fixed
point of the diffeomorphism ϕ1 : M → M . An alternate way of saying this is
as follows: If x is a fixed point of the flow ϕt : M → M , then the derivative
Dϕt(x) : Tx(M) → Tx(M) defines a linear representation of the real line and so
can be written in the form Dϕt(x) = etA where A is a linear endomorphism of
Tx(M).

Hyperbolicity for M = Rn is an eigenvalue condition. The eigenvalues of
the linear part of a vector field at a hyperbolic singularity have nonzero real
part. In the case of a closed orbit γ = O(x, ϕ), we choose a point p ∈ γ and a
transversal τ to γ at p. The vector field’s flow defines a local diffeomorphism
(the first-return map) of τ to itself having p as a fixed point. Hyperbolicity of
γ means that the eigenvalues of the linear part of the first return map at p have
nonzero real part.

Hyperbolicity of an invariant manifold can be defined in terms of stable
and unstable subspaces. Let M be an invariant manifold, and let TM denote
the tangent space at M . Hyperbolicity implies that there exist complementary
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subspaces Es and Eu of TM such that for all x ∈ M , the linearization of the
flow at x has the following properties:

• Stable Subspace: For all v ∈ Es, the linearized flow contracts in the Es

direction, i.e.,

lim
t→∞

∥DΦt(x)v∥
∥v∥

= 0.

• Unstable Subspace: For all u ∈ Eu , the linearized flow expands in the
Eu direction, i.e.,

lim
t→−∞

∥DΦt(x)w∥
∥w∥

= 0.

Example 3. An equilibrium is a sink if all the eigenvalues of the linearization
are negative, a source if all of them are positive, and a saddle otherwise.

Fun Fact: The Hartman–Grobman theorem states that the orbit struc-
ture of a dynamical system in a neighbourhood of a hyperbolic equi-
librium point is topologically equivalent to the orbit structure of the
linearized dynamical system.

4.3 Structural stability in dimensions greater than two

Theorem 4 ([7], [8]). A vector field S is structurally stable if it satisfies Axiom
A and the Strong Transversality conditions.

4.3.1 Axiom A

A point x ∈ M is nonwandering of the vector field S if for any neighborhood
V of x in M , there is t ≥ 1 such that ϕt(V ) ∩ V ̸= ∅. The set of nonwandering
points of S is the nonwandering set of S, and denoted by Ω(S).

Definition 5. S is an axiom A flow if the following two conditions hold:

1. The nonwandering set of S,Ω(S), is a hyperbolic set and compact.

2. The set of periodic points of S is dense in Ω(S).

Singularities (i.e. points where S(x) = 0) and points of periodic orbits are
all nonwandering.

Definition 6. Suppose M is a manifold, ϕt : M → M is a flow. We say that
ϕt is hyperbolic if for every p ∈ M there is a splitting of the tangent space
TpM = Es(x)⊕E0(x)⊕Eu(x), where E0 = ⟨ϕ̇t⟩ is the flow direction and there
are constants C > 0 and λ ∈ (0, 1) such that for every t > 0 one has

∥Dϕt(v)∥ ≤ Cλt∥v∥

for v ∈ Es(x) and
∥Dϕ−t(v)∥ ≤ Cλt∥v∥

for v ∈ Eu(x) .
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4.3.2 Strong Transversality Condition

If a vector field S satisfies Axiom A, then for any x ∈M , the stable manifold

W s(x) =

{
y ∈M : lim

t→+∞
d(ϕt(y), ϕt(x)) = 0

}
of x and the unstable manifold

Wu(x) =

{
y ∈M : lim

t→−∞
d(ϕt(y), ϕt(x)) = 0

}
of x are each an injectively immersed Cr submanifold of M , if S is Cr.

An Axiom A system S satisfies the strong transversality condition if W s(x)
is transverse to Wu(x) at all x ∈M . Roughly, this requires that the stable and
unstable manifolds cross when they intersect.

Two submanifolds M1 and M2 are transverse if their tangent spaces span
Rn.

Remark 3. The stability and genericity of transversality make it a very powerful
condition, and give rise to a number of applications, in many branches of science
which might not initially seem related to differentiable manifolds. If a data set
can be represented as a manifold, which is transverse to some condition that we
care about, then we know that any (small) perturbations of the data set will
not effect its relation to this important condition.

Remark 4. For higher than 2 dimensional systems saddle-to-saddle connections
can be structurally stable, and can be hence used for robust neural computation
with transients, see also [6].

5 Persistence of Normally Hyperbolic Invariant
Manifolds

The following sections are based on Chapter 1 and 2 in [3] and Chapter 1 in [2].
NHIMs are robust structures that persist under small perturbations of the

system’s parameters. This robustness makes them valuable tools for analyzing
the long-term behavior of dynamical systems, especially in applications where
parameter variations are common. They provide a structured framework for
analyzing the local stability and global behavior of solutions in the vicinity of
certain invariant sets, such as equilibrium points or periodic orbits, in a dynam-
ical system defined by differential equations. This section delves into the theory
of NHIMs for flows, highlighting their significance and mathematical properties.
NHIMs play a pivotal role in understanding the qualitative dynamics of a sys-
tem. They provide a structured framework for analyzing the local stability and
global behavior of solutions in the vicinity of certain invariant sets, such as equi-
librium points or periodic orbits, in a dynamical system defined by differential
equations.
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Remark 5. NHIM results and fast-slow decomposition has been applied in neuro-
science, for example to reduce the dimensionality of the original Hodgkin-Huxley
model [? ] to two dimensions [? ] and to further simplify it as the theta neuron
model [? ].

A Normally Hyperbolic Invariant Manifold (NHIM) is a subset of the state
space of a dynamical system that possesses two primary properties: invariance
and normal hyperbolicity.

5.1 Invariance

The manifold remains invariant under the dynamics of the system, meaning
that if a solution trajectory starts on the manifold, it stays on the manifold for
all future times.

Definition 7. Let M be a compact connected Cr-manifold with boundary
embedded in RN . Let ϕt(·) denote the flow defined by the vector field

ż = H(z) for z ∈ RN , H ∈ Cr(RN ,RN ) with r ≥ 1 (5)

• invariant manifold: if for every p ∈M , we have ϕt(p) ∈M for all t ∈ R.

• inflowing invariant manifold: if for every p ∈ ∂M , the vector field is
pointing strictly inward and for all p ∈M,ϕt(p) ∈M for all t ≥ 0.

• overflowing invariant manifold: if for every p ∈ ∂M , the vector field is
pointing strictly outward and for all p ∈M,ϕt(p) ∈M for all t ≤ 0.

• locally invariant manifold: if for each p ∈ M , there exists a time interval
Ip = (t1, t2) such that 0 ∈ Ip and ϕt(p) ∈M for all t ∈ Ip. Local invariance
means that trajectories can enter or leave M only through its boundaries.

Remark 6. Note that reversing the time direction in Eq.5 turns an overflowing
invariant manifold into an inflowing invariant manifold and conversely. There-
fore, we shall restrict to overflowing invariant manifolds for the remaining dis-
cussion.

5.2 Normal hyperbolicity

The behavior of solutions near the manifold is characterized by a combination
of stable and unstable directions. More precisely, the tangent space of the man-
ifold can be decomposed into three subspaces: the stable subspace, the unstable
subspace, and the center subspace. The stable and unstable subspaces are re-
sponsible for the attracting and repelling behavior of solutions near the manifold,
respectively, while the center subspace accounts for any other directions.
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5.3 Fast–Slow Systems

Definition 8. A fast–slow vector field (or (m,n)-fast–slow system) is a system
of ordinary differential equations taking the form

ϵdxdτ = ϵẋ = f(x, y, ϵ),
dy
dτ = ẏ = g(x, y, ϵ),

(6)

where f : Rm × Rn × R → Rm, g : Rm × Rn × R → Rn, and 0 < ϵ ≪ 1.
Furthermore, the x variables are called fast variables, and the y variables are
called slow variables.

Setting t = τ/ϵ gives the equivalent form

dx
dt = x′ = f(x, y, ϵ),
dy
dt = y′ = ϵg(x, y, ϵ).

(7)

The parameter ϵ can be thought of as the “separation” of time scales and
is sometimes called the time-scale parameter. If it appears in a statement or
theorem, then it indicates that ϵ is sufficiently small, i.e., 0 < ϵ ≪ 1 means
that there exists some ϵ0 > 0 such that for all ϵ ∈ (0, ϵ0], the statement of the
theorem holds.

The differential-algebraic equation obtained by setting ϵ = 0 in the formu-
lation of the slow time scale is called the slow subsystem or slow vector field:

0 = f(x, y, 0),

ẏ = g(x, y, 0).
(8)

The flow generated by Eq. 8 is called the slow flow.
The slow subsystem is also referred to as the reduced problem and its flow as

the reduced flow. Note that Eq. 8 is not an ODE, but an ODE with an algebraic
constraint f(x, y, 0) = 0. Therefore, we have a differential-algebraic equation
(DAE). Initial conditions x(0) = x0 and y(0) = y0 must satisfy the constraint
for solutions to exist.

The parameterized system of ODEs obtained by setting ϵ = 0 on the fast
time scale formulation Eq. 7 is called a fast subsystem or fast vector field:

x′ = f(x, y, 0),

y′ = 0.
(9)

The flow of Eq. 9 is called the fast flow.
The set of equations Eq. 7 is also referred to as the layer equations or the

layer problem. This terminology encodes the geometric idea that each fixed y
describes one “layer” of the fast subsystem.

The case ϵ = 0 is also called the singular limit. The slow and fast formula-
tions give a hint as to how we should analyze the full system with 0 < ϵ≪ 1.

Definition 9. The critical set is defined as:

C0 = {(x, y) ∈ Rm × Rn : f(x, y, 0) = 0}.

If C0 is a submanifold of Rm × Rn, we refer to C0 as the critical manifold.
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Proposition 1. Equilibrium points of the fast flow are in one-to-one correspon-
dence with points in C0.

Definition 10. A subset S ⊂ C0 is called normally hyperbolic if the m × m
matrix (Dxf)(p, 0) of first partial derivatives with respect to the fast variables
has no eigenvalues with zero real part for all p ∈ S.

Proposition 2. A subset S ⊂ C0 is normally hyperbolic if and only if for
each p = (x∗, y∗) ∈ S, we have that x∗ is a hyperbolic equilibrium point of
x′ = f(x, y∗, 0).

Let’s connect the general theory of normally hyperbolic invariant manifolds
from Sec. 5.5 to fast–slow systems following [1]. The first question is, when is a
critical manifold C0 normally hyperbolic in the context of fast–slow systems?

Theorem 5 (Fenichel’s theorem, fast-slow version [1]). Suppose S = S0 is a
compact normally hyperbolic submanifold (possibly with boundary) of the critical
manifold C0 of Eq. 6 and that f, g ∈ Cr(r < ∞). Then for ϵ > 0 sufficiently
small, the following hold:

F1 There exists a locally invariant manifold Sϵ diffeomorphic to S0.

F2 Sϵ is normally hyperbolic and has the same stability properties with respect
to the fast variables as S0 (attracting, repelling, or of saddle type).

F3 Sϵ has Hausdorff distance O(ϵ) to S0 (as ϵ→ 0).

F4 The flow on Sϵ converges to the slow flow as ϵ→ 0.

F5 Sϵ is Cr-smooth.

5.3.1 The Slow Flow

The next goal is to obtain an analytical expression for the slow flow on the
critical manifold C0.

Suppose now that C0 is a manifold and p ∈ C0 is a regular point. Then the
implicit function theorem yields the existence of a map h : Rn → Rm describing
C0, locally near p, as a graph, and f(h(y), y, 0) = 0 holds near p. The map h
can be used to reduce the slow subsystem 0 = f(x, y, 0), ẏ = g(x, y, 0), to the
simpler form ẏ = g(h(y), y, 0).

5.4 Generalized Lyapunov-type numbers

For a definition of normal hyperbolicity (similar to the concept of hyperbolicity)
we need constraints on the speed of the flow and the ratio of the speeds in the
normal and tangent direction along the invariant manifold. This is measured
with the generalized Lyapunov-type numbers. Let Π: TRN |M → N denote the
projection of a vector onto the normal component to M fixing the base point.
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To compare the (speed of the) flows in the tangential and normal directions, we
need the following maps defined for every p ∈M :

At(p) = Dϕ−t(p)|M : TpM → Tϕ−t(p)M,

Bt(p) = Π ◦Dϕt(ϕ−t(p))|M : Nϕ−t(p) → Np.

Here At is the linearization of the (backward) tangential flow, and Bt is the
linearization of the flow in the normal direction.

Some helpful notation:

w0 ∈ Np and v0 ∈ TpM,

with the corresponding vectors obtained under the linearized flow based at the
point ϕ−t(p) denoted by

w−t = (Π ◦Dϕ−t(p))w0 and v−t = Dϕ−t(p)v0,

Definition 11. Let p ∈M . The generalized Lyapunov-type numbers are defined
by

ν(p) = inf

{
a :

1

∥w−t∥at
→ 0 as t→ ∞,∀w0 ∈ Np

}
(10)

and if ν(p) < 1,

σ(p) = inf

{
b :

∥v−t∥
∥w−t∥b

→ 0 as t→ ∞,∀w0 ∈ Np, v0 ∈ TpM

}
. (11)

Remark 7. ν(p) is a quantitative measure of stability, while a small σ(p) implies
that the normal direction of the dynamics dominates the tangent direction.

Lemma 6.

ν(p) = lim sup
t→∞

∥Bt(p)∥1/t

σ(p) = lim sup
t→∞

log ∥At(p)∥
− log ∥Bt(p)∥

if ν(p) < 1.
(12)

Example 7. Consider the linear ODE given by

ż =

(
λ 0
0 −µ

)
z for z ∈ R2 and λ, µ > 0. (13)

M = {z = (z1, z2)
⊤ ∈ R2 : z1 ∈ (−1, 1), z2 = 0} is an overflowing invariant

manifold inducing the splitting

TR2|M = TM ⊕N

where the two-dimensional bundles are given by

TM = {(z1, 0)× (R, 0) : z1 ∈ (−1, 1)},
N = {(z1, 0)× (0,R) : z1 ∈ (−1, 1)}.

(14)
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To calculate At and Bt, we need the (linearized) flow for Eq. 13 and the pro-
jection Π onto N . Direct calculation yields

Dϕt =

(
eλ 0
0 e−µ

)
, Π =

(
0 0
0 1

)
. (15)

This gives the tangential and normal dynamics

At = Dϕ−t|M (p) =

(
e−λt 0
0 0

)
Bt = Π ◦Dϕt|M (ϕ−t(p)) =

(
0 0
0 e−µt

)
Therefore, the generalized Lyapunov-type numbers are given by

ν(p) = lim sup
t→∞

∥e−µt∥1/t = e−µ

σ(p) = lim sup
t→∞

log ∥At(p)∥
− log ∥Bt(p)∥

=
log |e−λt|
− log |e−µt|

= −λ
µ
.

An analogous condition will be needed if we are dealing with an inflowing
invariant manifold, just that the time direction will be reversed and asymptotic
stability holds in backward time. This requires a refined definition of generalized
Lyapunov-type numbers.

As before, it is assumed that M is a compact, connected, invariant manifold
of class Cr for some r ≥ 1. Suppose there exists a continuous splitting

TRN |M = N u ⊕ TM ⊕N s

with the projections

Πs : TRN |M → N s

Πu : TRN |M → N u.

Assume that the subbundles TM ⊕N s and TM ⊕N u are invariant under Dϕt.
Let u0 ∈ N u

p , v0 ∈ TpM and w0 ∈ N s
p Let

u−t = Πu ◦Dϕ−tu0, and v−t = Dϕ−t(p))v0 and w−t = (Π ◦Dϕ−t(p))w0

the images of the linearized flow.

Definition 12. The generalized Lyapunov-type numbers are

νu(p) = inf

{
a :

∥u−t∥
at

→ 0 as t→ ∞,∀u0 ∈ N u
p

}
νs(p) = inf

{
a :

1

∥w−t∥at
→ 0 as t→ ∞,∀w0 ∈ N s

p

} (16)

and if ν(p) < 1
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σu(p) = inf
{
b : ∥v−t∥∥u−t∥b → 0 as t→ ∞,∀u0 ∈ N u

p , v0 ∈ TpM
}

σs(p) = inf

{
b :

∥v−t∥
∥w−t∥b

→ 0 as t→ ∞,∀w0 ∈ N s
p , v0 ∈ TpM

}
.

(17)

We can rely on the following way to calculate the generalized Lyapunov-type
numbers:

νu(p) = lim sup
t→∞

∥Πu ◦Dϕ−t(ϕt(p))|Nu∥1/t,

νs(p) = lim sup
t→∞

∥Πs ◦Dϕt(ϕ−t(p))|N s∥1/t,

σu(p) = lim sup
t→∞

log ∥Dϕt|M (p)∥
− log ∥Πu ◦Dϕ−t(ϕt(p))|Nu∥

,

σs(p) = lim sup
t→∞

log ∥Dϕt|M (p)∥
− log ∥Πs ◦Dϕt(ϕ−t(p))|N s∥

.

(18)

Definition 13. Let M be a compact connected invariant manifold in RN . A
splitting TRN |M = N u ⊕ TM ⊕N s is called hyperbolic if νu(p) < 1, νs(p) < 1
for all p ∈M .

Definition 14. Let M be a compact connected invariant manifold in RN . A
splitting TRN |M = N u ⊕ TM ⊕ N s is called normally hyperbolic if νu(p) <
1, νs(p) < 1, σu(p) < 1, and σs(p) < 1 for all p ∈ M . If an invariant manifold
M admits a normally hyperbolic splitting, then it is called a normally hyperbolic
invariant manifold.

Lemma 8. GLTNs are constant on orbits.

This lemma implies that if we know ν(p), then we get a bound on the
linearized flow in the normal direction. The same reasoning obviously applies
to σ(p) and a suitable combination of At and Bt.

Remark 8. The notion of a normally hyperbolic manifold is one of the most
important concepts in the geometric theory of dynamical systems. It is helpful to
keep the colloquial version of Definition 14 in mind, which says that a manifold
is normally hyperbolic if the linearized flow in the normal direction dominates
the linearized flow in the tangential direction.

5.5 Perturbing invariant manifolds

With estimates on the linearized tangential and normal flows in hand, the goal
is to prove a perturbation result for invariant manifolds.

Definition 15. Let H and Hpert be two C1 vector fields on RN , and let K be
a compact set. Then we say that H is C1 θ-close to Hpert (on K) if

sup
z∈K

∥H(z)−Hpert(z)∥ ≤ θ,

sup
z∈K

∥DH(z)−DHpert(z)∥ ≤ θ.
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The definition is just a different way of stating that the unperturbed and
perturbed vector fields are C1-close in the sup-norm.

Now we can state Fenichel’s major perturbation result for overflowing in-
variant manifolds.

Theorem 9. Consider

ż = H(z) with H ∈ Cr and z ∈ RN . (19)

Let M be a Cr compact connected manifold that is overflowing invariant under
the flow ϕt defined by Eq. 19. Assume that

ν(p) < 1 and σ(p) <
1

r
for all p ∈M. (20)

Then for every Cr vector field Hpert that is C1 θ-close to H, with θ sufficiently
small, there is a manifold Mpert that is overflowing invariant under Hpert and
Cr-diffeomorphic to M .

For the issue of how large the perturbation may be with the overflowing
invariant manifold still persisting, see [9].

6 Van der Pol

Definition 16. A periodic solution γϵ of a fast–slow system is called a relaxation
oscillation if it converges (with respect to Hausdorff distance) in the singular
limit ϵ → 0 to a candidate γ0 consisting of alternating fast and slow segments
forming a closed loop.

Definition 17. A periodic solution γϵ of a fast–slow system is called a simple
relaxation oscillation if it converges in the singular limit ϵ → 0 to a candidate
γ0 consisting of alternating fast and slow segments in which jumps occur only
at generic fold points and the drop points are normally hyperbolic.

6.1 Singularities

So far, we have focused on the case in which the critical set is a manifold
consisting of regular points or the even stronger assumption that C0 is normally
hyperbolic. A large part of multiple time scale dynamics deals with loss of
regularity and normal hyperbolicity.

Definition 18 (Fold point). Suppose p ∈ C0, so that f(p, 0) = 0 holds. Then
p is a fold point if

(Dxf)(p, 0) is of rank m− 1.

A fold point is called nondegenerate if for vectors w and v, which are in the
left and right nullspaces of (Dxf)(p, 0) respectively, one has

w · [(Dxxf)(p, 0)(v, v)] ̸= 0 and w · [(Dyf)(p, 0)] ̸= 0.

14



Example 10 (Fold bifurcation). The simplest example in which (Dxf)(p, 0) is
rank deficient is a (1, 1)-fast–slow system

x′ = y − x2,

y′ = ϵg(x, y, ϵ),
(21)

with the critical manifold being a parabola

C0 = {(x, y) ∈ R2 : y = x2}.

We consider the origin (x, y) = (0, 0) for which

(Dxf)(0, 0, 0) =
∂f

∂x
(0, 0, 0) = −2x|x=0 = 0. (22)

Therefore, (0, 0) ∈ C0 is not regular and not normally hyperbolic. Observe that
the nondegeracy condition is satisfied’:

∂2f

∂ x2
(0, 0, 0) = fxx(0, 0, 0) ̸= 0. (23)

Remark: two nonnormally hyperbolic points in Example 3.2.3 satisfy conditions
analogous to Eqs. 22 and 23.

The fast subsystem of Eq. 21 is

x′ = y − x2,

y′ = 0.
(24)

In this case, y ∈ R is a parameter and Eq. 24 is the normal form for a fold
bifurcation at y = 0; alternative terms for a fold bifurcation are saddle-node
bifurcation, turning point, and limit point.

7 Definitions

7.1 General

Definition 19 (Compact). A topological space X is called compact if every
open cover of X has a finite subcover. For Rn compactness means closed and
bounded.

Definition 20 (Diffeomorphism). A diffeomorphism is a smooth and invertible
function with smooth inverse.

Definition 21. Hausdorff distance between two nonempty sets V,W ⊂ Rn,
which is defined by

dH(V,W ) := max

{
sup
v∈V

inf
w∈W

∥v − w∥, sup
w∈W

inf
v∈V

∥v − w∥
}
.
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7.2 Derivative

For a function F : Rm → Rn, the total derivative DF : Rm → L(Rm,Rn) assigns
to each point p ∈ Rm a linear map DpF ∈ L(Rm,Rn). With respect to to the
standard bases, this linear map can be represented as a matrix:

DpF =


∂F1

∂x1
|p · · · ∂F1

∂xm
|p

...
...

∂Fn

∂x1
|p · · · ∂Fn

∂xm
|p


This encodes the idea of “rate of change”.

7.3 The tangent vector and bundle

A tangent vector at a point x on a smooth manifoldM is a linear map v : C∞(M) →
R that satisfies the Leibniz rule, where C∞(M) is the set of smooth functions
on the manifold. In other words, a tangent vector is an operator that assigns
a real number to each smooth function on the manifold, and this assignment is
linear and obeys the product rule.

The tangent space Tp(M) at a point p on a manifold M is the vector space
consisting of all tangent vectors at that point. A tangent vector at p can be
thought of as an equivalence class of smooth curves passing through p, where
two curves are considered equivalent if their derivatives at p are equal.

TM =
⋃
p∈M

{p} × TpM

collects all the tangent spaces, i.e., elements in TM are pairs (p,TpM) consisting
of a point p ∈M and its associated tangent space. SinceM ⊂ RN , the Euclidean
inner product of the ambient space induces a splitting at each point Tp RN |M =
TpM⊕Np, where Np denotes the normal space to TpM consisting of all vectors
orthogonal to TpM and ⊕ is the usual direct sum. Hence, there is also a splitting
TRN |M = TM ⊕ N , where N denotes the normal bundle, which collects all
normal spaces. Using the Euclidean inner product, we also have an associated
norm ∥ · ∥ measuring the length of vectors in the tangent and normal bundles.

7.3.1 Tangent space as directional derivatives

One to one correspondance between vectors (thought of tangent vectors at a
point) and derivations at a point.

Transversality

Definition 22 (Transversal intersection). Two submanifolds M1 and M2 of
a manifold M are transversal (or intersect transversally) in RN if the tangent
spaces TpM1 and TpM2 span Tp RN ≃ RN at each point p ∈M1 ∩M2, i.e.,

TpM1 ⊕ TpM2 = TpM.
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We write M1 ⋔M2.

Remark 9. When two submanifolds or curves intersect in a transversal way
within a manifold, it means that their respective tangent spaces intersect at a
point without being tangent to each other. In other words, they cross at an
angle, and they are not ”parallel” or ”tangent” in the traditional sense.
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